Cerebrospinal Fluid Volume Monitoring for Hydrocephalus Therapy

S. Basati¹, M. LaRiviere², R. Penn¹, A. Linninger¹

1. Laboratory for Product and Process Design, Department of Bioengineering, University of Illinois at Chicago
2. Section of Neurosurgery, Department of Surgery, University of Chicago

Design of Medical Devices Conference, MN, 2011

Motivation

- An abnormal accumulation of cerebrospinal fluid (CSF) leads to a condition known as Hydrocephalus. Over 150,000 people are diagnosed with this disease in the U.S. each year.
- The current standard treatment consists of pressure-regulated shunts as an open-loop control system. This technology was proposed in 1950 and has not changed significantly.
- Treatment requires many shunt revisions due to shunt malfunction or pressure setting adjustment. Inefficient control of CSF volume can be deadly; over/under-drainage can be fatal.
- No treatment exists for older patients with Normal Pressure Hydrocephalus (NPH).

Objectives:
- Explore alternative method to monitor and control the disease state of the brain.
- Develop a computational model on intracranial dynamics to better understand the system and explore the impedance technique to measure fluid volume accumulation.
- Validate the measurement in bench-top and animal models.
- Develop a chronic monitoring implantable system.

Bench-top/Animal Validation

Prior to animal testing, bench-top experiments on brain phantoms allow for calibration.
- Hydrocephalus induced in weanling rats by kaolin injection into the cisterna magna. (30% induction rate)
- After confirmation of hydrocephalus, 1-3 weeks later, sensor with internal shunt is implanted into lateral ventricles and CSF is removed acutely.

Hydropholic Volume Measurement

- Hydropholic volume measurement
 - Hydropholic fluid inswelling test by kaolin injection into the cisterna magna (20% reduction rate)
 - After confirmation of hydropholic, 1-3 weeks later, sensor with internal shunt is implanted into lateral ventricles and CSF is removed acutely.
 - 250 µL of CSF removed, yet only 30% of volume reduction was measured.
 - Perhaps incorrect calibration curve used.
 - First ever volume measurements.

Table 1: Comparison of phantom properties and brain tissue.

| Property | Agarose Gel | Silicone Gel | Brain Tissue
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic modulus</td>
<td>15 ± 2 kPa</td>
<td>2.85 ± 10^3 Pa</td>
<td>2.85 ± 10^3 Pa</td>
</tr>
<tr>
<td>Density</td>
<td>1.05 g/mL</td>
<td>1.05 g/mL</td>
<td>1.05 g/mL</td>
</tr>
<tr>
<td>Electro coefficients</td>
<td>50 mS/cm</td>
<td>50 mS/cm</td>
<td>50 mS/cm</td>
</tr>
</tbody>
</table>

Conclusions and Future Directions

- Novel treatment was proposed that directly monitors volume as opposed to passive, pressure based valves.
- Real-time changes in intracranial ventricular volume can be measured in vivo.
- Prototype designed and fabricated to test the novel CSF volume monitor technique.
- Animal model is developed to validate device and dynamic changes in intracranial ventricular volume are recorded for the first time.

Future Directions

- Use silicone based catheters instead of polymers.
- Incorporate pressure transducer to dynamically record pressure-volume.
- Program microcontroller for wireless data communication.
- Use wireless microcontroller for periodic measurements to increase battery lifespan.
- Validate device and dynamic changes in intracranial ventricular volume are recorded for the first time.

Acknowledgements

Financial support provided for part of this research under NIH grant 5R21EB4956 is acknowledged. The treatment device is patent pending (# WO2012050544).

We would also like to thank:
- Dr. MR Del Bigio, University of Manitoba
- Dr. Linninger, UIC
- Materialise, Inc.
- Tim Harris, UIC

References