INTEGRATED DESIGN AND CONTROL UNDER UNCERTAINTY - ALGORITHMS AND APPLICATIONS

Jeonghwa Moon, Seon B. Kim, Gerardo J. Ruiz and Andreas A. Linninger

Laboratory for Product and Process Design

Department of Chemical and Bio-Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

7th International conference on Foundations of Computer-Aided Process Designs, June 7-12, 2009, Breckenridge, Colorado, USA

Paper #55

Motivation

Classical design approach

- Simultaneous data design
 - Optimal design of process
 - Optimal design for process

- Design optimization problem is separated from feasibility test.
- Main optimization problem is solved in discretized sampling space.
- Feasibility test follows the design optimization problem.

- Simultaneous design and control optimization
 - Maximizes the overall system performance in face of operational and model uncertainty.
 - Dynamic state performance & feedback are considered.
 - Quantifies the actual dynamic process and prevent dynamic constraint violation.
 - Integration renders non-polynomial (NP) hard non-convex MINLP
 - Hard to solve with existing mathematical programming methodologie.

- Problem Decomposition Algorithm (Moldovan et al. 1996)
 - Design optimization problem is separated from feasibility test.
 - Main optimization problem is solved in discretized sampling space.
 - Feasibility test follows the design optimization problem.

- Steady Uncertain Space
 - Main optimization problem is solved in discretized sampling space.

- Direct Simultaneous Approach
 - Design optimization problem is separated from feasibility test.
 - Main optimization problem is solved in discretized sampling space.
 - Feasibility test follows the design optimization problem.

- Embedded Control Optimization
 - Design optimization problem is separated from feasibility test.
 - Main optimization problem is solved in discretized sampling space.
 - Feasibility test follows the design optimization problem.

Problem Decomposition

A: Sampling scenarios for uncertain parameter space
- Convert the infinite uncertain space to a discrete space.
- Stochastically simplifies problem size.
- Sampling technique: Latin hypercube

B: Simultaneous Design and Control Optimization
- Stochastic optimization problem defined over the finite sample set
- Feasibility test follows the design optimization problem.

C: Rigorous Flexibility Test
- Ensure constraints satisfaction for ALL uncertain realizations
- Find critical scenarios

Simultaneous Design and Control

- No problem, dynamic constraints constraints.
- Existing mathematical programming solutions, usually do not work.
- Hard to solve the problems of industrial applications.

Embedded Control Optimization

Case Study: Integrated Design and Control of Isomerization Process

Overview

- The process to convert normal butane \((\alpha_C)\) into isobutane \((\alpha_I)\).
- Isobutene is more valuable as a chemical feed stock than normal butane.
- Separation is not easy because of similar volatilities of \(\alpha_C\) and \(\alpha_I\).
- MIMO highly non-linear system.
- Reaction

Process

- Exothermic irreversible reaction.
- Usable

Isomerization process (Luyben, 1999)

Conclusions

- Embedded control optimization:
 - Conceptual approaches to achieve the desired integrated design of integration and control.
 - Problem size reduction will be improved with Embedded control.
 - Simulation of integrated D&C for plantwide process is shown.

- Future work
 - Different algorithms should be considered and tested.
 - More challenging case studies must be done.

Acknowledgements

- Dr. Andrea Malcolm, Research Engineer, Cargill, Minneapolis, MN
- Dr. M Burke, NSF Program Director
- NSF Grant CBET-0826162

References

- References

Sensitivity analysis

- Sensitivity analysis
 - Specifications
 - Input feed rate
 - Pressure in the reactor
 - Process variables
 - Manipulated variables
 - Design optimization
 - Capital Cost
 - Operating Cost
 - Total Annual Cost

- No other (10 uncertain scenarios)
- No other (10 uncertain scenarios)

- i* not (10 uncertain scenarios)

- No other (10 uncertain scenarios)**

- J = 0.268 (1.1, 1.950)

- No other (10 uncertain scenarios)

- No other (10 uncertain scenarios)

- No other (10 uncertain scenarios)**