ALGORITHMIC APPROACHES TO INTEGRATED DESIGN AND CONTROL

Motivation

- Classical design approach
 - Steady State Model
 - Simulation
 - Optimal design at Nominal Conditions
 - Arbitrary
 - Control under Fixed Design Phase

- Problem Decomposition
 - Problem Decomposition Algorithm (Mohdow et al. 1996)
 - Design optimization problem is separated from feasibility test.
 - Main optimization problem is solved in discretized sampling space.
 - Feasibility test is followed by optimization problem.

- Simultaneous Design and Control optimization
 - Maximizes overall system performance in face of operational and model uncertainty.
 - Quantifies the actual dynamic process and prevent dynamic constraint violation.
 - Integration renders non-polynomial (NP) hard non-convex MINLP.
 - Nondimensionalization methodology.

- Simultaneous Design and Control Optimization
 - Maximize overall system performance in face of operational and model uncertainty.
 - Quantifies the actual dynamic process and prevent dynamic constraint violation.

Simultaneous Design and Control

- Problem Decomposition
 - Problem Decomposition Algorithm (Mohdow et al. 1996)
 - Design optimization problem is separated from feasibility test.
 - Main optimization problem is solved in discretized sampling space.
 - Feasibility test is followed by optimization problem.

- Simultaneous Design and Control Optimization
 - Stochastic optimization problem defined over the finite sample set.
 - Optimize design and control parameters for minimum expected operating cost and capital cost.

- Rigorous Flexibility Test
 - Ensure constraints satisfaction for all uncertain realizations.
 - Find critical scenarios.

Embedded Control Optimization

- Embedded Control Optimization
 - Mapping dynamic process model into a linear state space model.
 - Ensured in every time step of discretized time.
 - Identification methods
 - Sequential least squares method.
 - Estimation
 - Minimizes the prediction error
 - Measurement noise
 - Process noise
 - Observation noise.
 - Regulation: Optimal control action
 - Linear Quadratic Regulator (LQR)
 - Model Predictive Control (MPC)

Rigorous Flexibility Test

- Ensure constraints satisfaction for all uncertain parameter space.
- Find critical uncertain values.
- Steady state feasibility test is done first, then dynamic feasibility test is done.
- Stochastic optimization problem defined over the finite sample set.
- Optimize design and control parameters for minimum expected operating cost and capital cost.

- Embedded Control Optimization
 - Ensures feasibility for all uncertain parameter space.
 - Finds critical uncertain values simultaneously.
 - Minimizes the prediction error.
 - Measurement noise.
 - Process noise.
 - Observation noise.

Case Study - Integrated Design and Control of Ternary Distillation Column

- Ternary distillation Column
 - Dynamic model of distillation column.
 - Accounts for hold-ups.
 - Multi-Input, Multi-Output control.
 - Non-linear system.

- Components
 - Pentane (z1), Hexane (z2), Heptane (z3).

- Variables Categories
 - State: Liquid, vapor, reboiler, reboiler.
 - Control: Steady state, vapor ratio, vapor, reboiler.

- Inlet Scenarios
 - Input feed changes: 0.35x1–0.35x2–0.35x3.

- Control activity (0-4550)
 - Control activity (0-4550).

- Costs Calculation
 - Operating costs.
 - Capital costs.
 - Total costs.

- Master optimization problem was solved by Genetic algorithms.

Conclusions

- Future work
 - Different algorithms should be considered and tested.
 - More challenging case studies must be done.

Acknowledgements

- Andreas Malcolm, Research Engineer, Cargill, Minneapolis, MN.
- NSF Grant CBET-0826102.

References